

CEI (Important Projects of Common European Interest) on Microelectronics & FBK - Sensors & Devices Centre

Prof. Richard Hall-Wilton FBK-SD director

World Manufacturing Forum 2022

Co-funded by the European Union

Tim Jun Jun Jun

Jun Immine Immi

Fondazione Bruno Kessler About us

PROFILE

Fondazione Bruno Kessler (FBK) is a research not-forprofit public interest entity result which is 60 years old

MISSION

FBK aims to excellence in science and technology with particular emphasis on interdisciplinary approaches and to the applicative dimension.

=5<

Trento, Italy

3

11 research Centers

- 410 researchers
- 2 specialized libraries
- 7 laboratories

Sensors and Devices Centre

Bleeding Edge Sensors and Devices based around technological platforms

Scalable: silicon et al. fabrication techniques

Contribution across the development chain: ideation to fabricate in-house to bring to market

For science and society

Development Philosophy: Unique capability

7

I&QO Custom Products

* PIC

Photonics and Quantum Technology

Nanomaterials	Upconversion nanoparticles TRL 5-6 Nanodiamonds and bulk diamond with NV centers TRL 3-4				
Integrated Optics	Integrated spectral shaper TRL3 Evanescent microring biosensors TRL 3-4 PICs* with integrated photodetectors TRL 3 PCB boards, electrical control circuits for heater TRL 3-4	SOI based PICs TRL 2 Si3N4 and SiON based PICs TRL 3			
Quantum Optics	PiCs for linear quantum optics TRL2 PiCs with integrated single photon counter TRL2	SOI PICs with entangled photon generation TRL 2 Si3N4 and SiON based PICs TRL 3			
Photonic integrated circuit	O.4 0.75 VIS NI	1.0 2.7 λ (μm) R SWIR			
5	SiO ₂ <i>VIS-NIR-SWIR</i> <i>Refractive index</i>	contrast, Δ			

Integrated Readout ASICS and Image Sensors products

Example of a low-power vision sensor for battery-operated surveillance systems.

They combine single-photon detectors and high-speed electronics to count photons and measure their arrival time in parallel for each pixel.

Monolithic Active Pixel Sensors

MAPS exploit the interaction of charged particles with matter to measure their energy, position and direction with a low energy budget.

They gather extra information from the scene at chip- or pixel-level to perform complex tasks using a small amount of power.

Multispectral, X-ray and THz

Low-Power Vision Sensors

They add the wavelength as another variable capable of increasing the information carried by an image, to see things our eye cannot see.

Readout ASICs

They extract the useful signal from custom detectors (SiPM, SDD, strip detectors, 3D SiPM, ...), minimizing noise and distortions.

8

IRIS Technology / Application matrix

	Quantum S&T	Space S&T	Science	Bio-/Medical Food, Health	Security	Industrial / Automotive	Consumer / IoT	
Single-Photon imagers	Quantum & ghost QRNG Quantum comm.	¹ Solid-state LiDAR Scientific imaging HDR imaging	Time-resolved img Quanta imaging	FLIM, PET, hadron therapy Raman, SPECT,		LiDAR/d-ToF	3D imaging Depth sensing 2D imaging	
Low-Power Vision Sensors		Star-tracking			³ Low-power video-surveillance	High-speed vision	Al-enhanced imaging, HDR	
Multispectral, X-ray and THz			Multi-spectral (THz) imaging	X-ray imaging for dental appl.	THz / MIR sensing	⁴ Quality control with THz		LEV
Monolithic Active Pixel Sensors			Particle tracking for HEP	² Particle tracking for hadron therapy				TRI
Readout ASICs	Readout ASICs for quantum detectors & photonic circuits	Readout ASICs for SiPM, SDD, InGaAs	Readout ASICs for SiPM, SDD, InGaAs	Air quality monitoring		Self-mixing interferometry	Self-mixing interferometry	

³Low-power video-surveillance Surveillance of large areas with battery operated devices

Smart motion detection insensitive to standard background variations (sea waves, trees moving)

9

Custom Radiation Sensors at a glance

Mission: Sensors designed and realized to meet your needs

Our mission is highest quality research in the field of radiation sensors to stay at the forefront of the worldwide understanding of the physical processes and the technological developments to provide our partners with leading-edge devices.

=5<

Applications (amongst others):

Medical Physics

Big Science: High Energy Physics, neutrino physics, ...

X/Gamma sensors (SDD produced at FBK) integrated on PCB in FBK with space compliant components (payload of nanostallite Space Industry constallation)

Flow sensors for Gas Energy metering

Objectives

- Measurement of gas quality at the point of delivery, also in the perspective use of hydrocarbons / hydrogen mixtures for residential or industrial use.
- A multisensor MEMS device and an artificial intelligence approach to measure the higher heating value of natural gas

Technologies for Quantum Devices

Superconducting devices such as SQUIDs, Josephson Junctions, Josephson Parametric amplifiers

Stress Sensors for the automotive sector

Objective

To study MEMS sensors for direct measurement of braking torque.

Brain Organoids - On Chip Pure and a state of the state

MEMS Technology

Nano-g accelerometer for Space satellite (MST/MNF)

Objectives

The accelerometer will be based on an inertial sensor on silicon "capacitive comb" with transversal movement, realized through a process of bulk micromachining.

Brain Inspired Devices

Micro and Nano fabrication Facility IPCEI1: 1200m² moving to >2000m² semiconductor ISO4-6 cleanrooms

6" Microfabrication Area Clean Room Detectors

700 m²; Class 10/100 0,8 um CMOS pilot line: Ion Implantation, Oxidation, Diffusion, RIE, Deep RIE (silicon and oxide), Lithography (stepper 0.35 um and mask aligner), metal sputtering, optical profilometry

Clean Room MEMS

500 m² Class 100/1000 diffusion, lithography (mask aligner), wafer bonding, electroplating, Si bulk micromachining, metal evaporation, RIE, mechanical and optical profilometry,

Testing Area

300 m² manual parametric testing, automatic parametric/functional testing, optical testing (spectral responsivity, quantum efficiency), solar cells efficiency characterization, gas and pressure sensors test benches

Integration Area

100 m² clean room Class 1000 Microassembly station; screen printing, bonding (ball & wedge bonder), Shear-Pull Tester, reflow oven, CNC micro-mill, pick and place

Nano- and Micro- Analytical Facility

Nano Ramen, FIB-SEM-EDX-EBSD, D-SIMS, TOF-SIMS, XPS, AFS, XRD/XRF

IPCEI ME 1: improve European competitivity in microelectronics Improve production of devices in Europe

IPCEI: Key strategic instrument with regard to the implementation of the European Union Industrial Strategy IPCEI ME (Microelectronics) 1: 32 companies and RTOs from FR/DE/IT/AU on 43 sub-projects *Ecosystem: Up to 425 indirect partners involved*

5 technology fields: energy efficient chips, power semiconductors, sensors, advanced optical equipment and compound materials

IPCEI ME1 for FBK:

- Ongoing 2021-2024
- Equipment, people, research effort to achieve this
- Technical target: towards 3D integration with through silicon vias (sensor + readout chip).

IPCEI ME/CNT: improve European competitivity in microelectronics Improve production of devices in Europe

IPCEI ME continuation - if approved - expected to be:

- 20 States
- More than 100 members
- Coordination
- Future connection with the CHIPS ACT?
- Achieving sustainability by updating equipment, expertise, techniques, research and investing in personnel
- <u>Sustainability by strengthening the ecosystem</u>

IPCEI ME/CNT for FBK:

- 3D integration -> heterointegration
- SiC & Ge on Si with attention to space, QT, environment, automotive sectors

Crisis or opportunity ... ?

Summary

on Microelectronics

IPCE

- Semiconductor ecosystem is integrated, global, complex, and affects everything in modern life
- Strengthening and building on the existing ecosystem has many key aspects: ideation, research, capacity (big and small), training, ...
 Sensors & Devices centre at FBK as example of a part of this ecosystem in the niche of sensors and devices.
- IPCEI Microelectronics as an example of strengthening the roots of this ecosystem
- Longer term view on research and setting the parameters to address societal and manufacturing challenges
- Collaboration on nurturing complex ecosystems is something that Europe can do well ...
- Nurture and build all parts of this ecosystem
- Less cyclical: Smooth out the peaks and troughs
- Skills, training, and personnel are a huge challenge: research institutes part of the answer
- Chips crisis or opportunity?

eľ

Co-funded by the European Union

Trento, Italy